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1
An Introduction to Di�erential Equations

1.1 First Principles

I A di�erential equation is an equation involving an (often unknown)

function and its derivatives.

I An ordinary di�erential equation involves an independent variable

(say, G ), a function (say, ~ (G)), and one or more of its derivatives.

I The order of a di�erential equation is the order of the highest deriva-

tive that appears in the equation.

I A solution to a di�erential equation is a function that satis�es the

equation.

I A general solution to a di�erential equation is a family of in�nitely

many possible solutions, often involving arbitrary constants. With

additional information such as initial conditions, we can determine a

particular solution that no longer involves arbitrary constants.

I A �rst-order di�erential equation is separable if it can be rewritten as

" (G) 3G = # (~) 3~.

To solve this, directly integrate both sides of the equation.

I In some cases, we’ll need a substitution in order to make the equation

separable.

– If ~ ′ = 5 (0G +1~ + 2) , we employ a linear change of variable. Let

D = 0G +1~ + 2 =⇒ D ′ = 0 +1~ ′.

– If ~ ′ = 5 (~/G) , we let ~ = GE , and ~ ′ = GE ′ + E .
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Example 1. The decomposition of a radioactive element is proportional

to the amount of substance present at any given time. Model this phe-

nomena by means of a di�erential equation, and �nd its solution.

Solution. Let G (C) denote the amount of radioactive substance present

at a given time C . The derivative 3G/3C represents the rate at which the

amount of substance changes over time, and we have

3G

3C
∝ G .

As an equation, we introduce a proportionality constant—since radioac-

tive substances decrease in amount over time, we know that this constant

must be negative. We thus have the �rst-order di�erential equation

3G

3C
= −:G , where : > 0.

We check that the units agree with one another: G is measured in units

of mass, 3G/3C is measured in pass per unit time; thus, : must have units

[time]−1. The constant : is known as the decay rate of the element.

There is an ‘obvious’ solution: the constant zero function G (C) = 0 satis-

�es the di�erential equation. This, however, is not particularly interesting,

as this would assume that there is no amount of radioactive substance at

any given time. We may thus assume that G (C) ≠ 0: in this case, we may

divide throughout by G to yield

1

G

3G

3C
= −: .

By the chain rule of di�erentiation, the left-hand side is the derivative of

ln |G | with respect to C . Thus,

3

3C
ln |G | = −: .

Integrating both sides with respect to C then yields

ln |G | = −:C + 2 ,

for some arbitrary constant 2 ∈ R. Taking the exponential of both sides,

we arrive at a solution:

G (C) = 4−:C+2 = �4−:C ,

where � = 42 is an arbitrary constant. Note that when C = 0, we have

G (0) = �: our arbitrary constant � thus gains some physical meaning—it

must represent the initial amount of substance present.

To determine the value of the decay constant : , more information,

such as the half-life of the radioactive substance, is required. If the half-

life is known to be g , then it takes g amount of time for the substance to

decrease by half: G (g) = G0/2. Plugging this into our solution yields

G0

2

= G04
−:g =⇒ : =

ln 2

g
.

Note that, indeed, : must be positive, as we have established when we set

up the di�erential equation.
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Example 2. Solve the di�erential equation

3~

3G
= 4G

(
1 +~2

)
.

Solution. We can solve this equation by a separation of variables:∫
1

1 +~2 3~ =

∫
4G 3G =⇒ tan

−1 ~ = 4G + 2 .

We have a general solution, which we may rewrite as ~ = tan (4G + 2)
(though this is not necessary).

Example 3. Solve the di�erential equation

3~

3G
=
1 − 2~ − 4G
1 +~ + 2G .

Solution. Observe that we may rewrite the di�erential equation as

3~

3G
=
1 − 2 (~ + 2G)
1 + (~ + 2G) .

We employ a linear change of variable: let

D = ~ + 2G =⇒ 3D

3G
=
3~

3G
+ 2.

Thus, our di�erential equation becomes

3D

3G
=
1 − 2D
1 +D + 2 =⇒ 3D

3G
=

3

1 +D .

This is now a separable equation!∫
1 +D 3D =

∫
33G =⇒ D + D

2

2

= 3G + 2 .

Since D = ~ + 2G , we thus have the general solution

~ + 2G + (~ + 2G)
2

2

= 3G + 2 .

Example 4. Solve the di�erential equation

2G~
3~

3G
−~2 + G2 = 0.

Solution. Observe that we may rewrite the di�erential equation as

3~

3G
=
~2 − G2
2G~

=
1

2

(
~

G
− G
~

)
.

Consider the substitution D = ~/G , or ~ = GD, such that ~ ′ = D + GD ′.
Substituting this into the di�erential equation yields

D + G 3D
3G

=
1

2

(
D − 1

D

)
=⇒ G

3D

3G
= −1

2

(
D + 1

D

)
.

Observe that this is now a separable di�erential equation!∫
2D

D2 + 1 3D =

∫
− 1
G
3G =⇒ ln

(
D2 + 1

)
= − lnG + 2 .

Since D = ~/G , we thus obtain the general solution

ln

(
~2

G
+ G

)
= 2 =⇒ ~2

G
+ G = �.
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1.2 The Geometry of Di�erential Equations

I A direction �eld (or a slope �eld) is a graph representing how the

solution to a di�erential equation changes at various points. To sketch

a direction �eld corresponding to a di�erential equation ~ ′ = 5 (G ,~),
simply select various points (0,1) on the G~-plane; at each of these

points, draw a short line segment whose slope is given by 5 (0,1) .

I An equilibrium solution of a di�erential equation is a solution that is

constant; these correspond to horizontal lines on a direction �eld. An

equilibrium solution ~ (C) = V is said to be stable if solutions about this

equilibrium approach V as C → ∞. Otherwise, the equilibrium point is

said to be unstable.

Example 5. Sketch a direction �eld for and determine any equilibrium

points of the di�erential equation

~ ′ = ~.

Solution. If ~ (G) is a solution to the di�erential equation, then the slope

at every point (0,1) on the graph of ~ (G) is simply 1.

G

~ Figure 1: A slope �eld for ~′ = ~. The

graphs of particular solutions ~ (G) = �4G
for various values of � have been plot in

red.

The slope �eld allows us to predict the long-term behavior of the solution

~ (G) without �nding it explicitly: in this example, we �nd that, depending

on the initial conditions, the solution ~ (G) can either in�nitely increase,

in�nitely decrease, or stay constant at ~ = 0. In particular,

I the di�erential equation has only one unstable equilibrium, at ~ = 0;

I when ~ (0) > 0, then ~ ′ > 0 and any solution ~ (G) increases towards

positive in�nity;

I when ~ (0) < 0, then ~ ′ < 0 and any solution ~ (G) decreases towards

negative in�nity.
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Example 6. Consider the following di�erential equation:

3~

3C
= −10~ (20 −~)

(
1 − 1

30

~

)
.

1. Determine the equilibrium solutions of this di�erential equation, and

state whether each equilibrium point is stable or unstable.

2. Determine the value of ~ as C → ∞ when ~ (0) = 15. Does your answer

change when ~ (0) = 150?

Solution. The equilibrium solutions occur when 3~/3C = 0: we thus have

~ = 0,~ = 20, and ~ = 30. Observe that the sign of 3~/3C changes as we

plug in di�erent values of ~ :

3~

3C
=

+ when G < 0 and 20 < G < 30,

− when 0 < G < 20 and G > 30.

We can sketch out a sign diagram for 3~/3C .

3~

3C

~
p

+ − + −

−→ ←− −→ ←−0

p
20

p
30

Thus, if ~ (0) = 15, we �nd that ~ ′ < 0 and ~ decreases towards the

equilibrium at 0 as C → ∞. When ~ (0) = 150, we �nd that ~ ′ < 0 and ~

decreases towards the equilibrium at 30 as C increases.

G

~ Figure 2: A sketch of the slope �eld

for the given di�erential equation. The

equilibrium solutions have been graphed

in red.
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1.3 Population Dynamics

I The Malthusian model assumes that the rate of change of a popula-

tion is proportional to its present value:

3~

3C
= :~ =⇒ ~ (C) = ~04:C , where ~0 = ~ (0) .

The Malthusian model assumes that, in the absence of limiting factors,

a population would grow exponentially with growth rate : .

I The Verhulst model assumes that the growth rate varies according

to the present value ~ of the population. When ~ is small, the growth

rate is approximately constant; this growth rate decreases as the pop-

ulation ~ increases, eventually becoming negative upon exceeding the

population’s carrying capacity ~∞ :

3~

3C
=

[
:

(
1 − ~

~∞

)]
~.

The Verhulst model assumes that a population grows logistically, such

that given any initial population,

lim

C→∞
~ (C) = ~∞.

Example 7. Solve the Verhulst di�erential equation given a known initial

population:

3~

3C
=

[
:

(
1 − ~

~∞

)]
~, ~ (0) = ~0.

Solution. We perform a separation of variables:∫
1

~ (1 −~/~∞)
3~ =

∫
: 3C .

To evaluate the integral on the left-hand side, we perform a partial frac-

tion decomposition:

1

~ (1 −~/~∞)
=

~∞
~ (~∞ −~)

=
1

~
+ 1

~∞ −~
.

Hence, we �nd that∫
1

~
+ 1

~∞ −~
3~ =

∫
: 3C =⇒ ln |~ | − ln |~∞ −~ | = :C + 2 .

Combining terms and exponentiating yields

~∞
~
− 1 = �4−:C =⇒ ~ (C) = ~∞

1 +�4−:C
.

When C = 0, we have ~ = ~0, so � = ~∞/~0 − 1. Thus, we �nd that

~ (C) = ~∞
1 + (~∞/~0 − 1) 4−:C

.
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Example 8. A certain population behaves according to the Verhulst

model with time measured in years. A constant number � of this species

is captured per year. Model this situation as a di�erential equation. De-

termine any equilibrium solutions, and hence, �nd the largest possible

number � of species that can be captured such that the population does

not go extinct.

Solution. We may directly modify the Verhulst equation to account for

the harvesting of species:

3~

3C
=

[
:

(
1 − ~

~∞

)]
~ − � = − :

~∞
~2 + :~ − �.

The equilibria of this di�erential equation can be computed with the

quadratic formula:

~ =
−: ±

√
:2 − 4:�/~∞
−2:/~∞

=
: ∓

√
:2 − 4:�/~∞
2:/~∞

.

Note that if :2 − 4:�/~∞ < 0, then the di�erential equation has no

equilibrium points. In particular, 3~/3C will always be negative: any

solution to the di�erential equation will be a decreasing function, and the

population is bound to disappear. We thus require that

:2 − 4:�/~∞ ≥ 0 =⇒ � ≤ :~∞/4,

and we can capture at most � = :~∞/4 of the species per year without

causing the population to go extinct. We now have a few di�erent possi-

bilities for the equilibria of the di�erential equation:

Case 1. If � = :~∞/4, there is one equilibrium point at V = ~∞/2.
This is an unstable equilibrium: if ~0 > V , then the population

decreases towards the equilibrium; however, if ~0 < V , the

population decreases rapidly until extinction.

Case 2. If � < :~∞/4, then the di�erential equation has two equilibrium

points:

V1 =
: −

√
:2 − 4:�/~∞
2:/~∞

, V2 =
: +

√
:2 − 4:�/~∞
2:/~∞

.

The equilibrium point at ~ = V2 is stable, since small �uctua-

tions about this point will allow the population to return to this

equilibrium. On the other hand, ~ = V1 is an unstable equil-

brium since a �uctuation about this point can potentially lead

the population to extinction.

We may visualize the populations’ trajectories by roughly sketching out

some slope �elds of the di�erential equation for various values of �, based

on the signs (i.e., positivity or negativity) of 3~/3C .
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C

~

When � > :~∞/4, the di�erential equation has no equilibria, and the

population is always bound for extinction.

V

C

~

When � = :~∞/4, there is one unstable equilibrium point, and slight

�uctuations in the population may lead to extinction.

V1

V2

C

~

When � < :~∞/4, there are two equilibria. At the stable equilibrium V2,

slight �uctuations in the population will allow the species to recover.

Figure 3: Sketches of slope �elds of the

modi�ed Verhulst equation for various

values of �.



2
Linear Di�erential Equations

2.1 First-Order Linear Equations

I A �rst-order linear di�erential equation is an equation of the form

0 (G) ~ ′ +1 (G) ~ = 2 (G) , with 0 (G) ≠ 0.

We can solve this by the method of integrating factors:

1. Rewrite the entire equation in standard linear form:

~ ′ + ? (G) ~ = @ (G) .

2. Calculate the integrating factor D = 4
∫
? (G) 3G

.

3. Multiply both sides of the equation by D:

D (~ ′ + ?~) = D@ =⇒ (D~) ′ = D@.

4. Integrate both sides of the equation.

I A Bernoulli di�erential equation is an equation which can be

expressed in the form

~ ′ + ? (G) ~ = @ (G) ~= ≡ ~−=~ ′ +~1−=? (G) = @ (G) .

To solve this di�erential equation, consider the substitution E = ~1−= ,

so E ′ = (1 −=) ~−=~ ′. Then, the Bernoulli equation is simply

E ′ + E (1 −=) ? (G) = @ (G) (1 −=) .

This is a �rst-order linear di�erential equation, which can be solved

using the method of integrating factors.
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Example 9. Find the general solution to the di�erential equation

G~ ′ −~ = G3.

Solution. Observe that the di�erential equation is linear, but not separable—

we thus solve it by using an integrating factor. First, we we rewrite it in

standard linear form: dividing throughout by G , we have

~ ′ − 1

G
~ = G2.

We calculate the integrating factor: observe that ? (G) = −1/G , and so our

integrating factor is∫
? (G) 3G = − lnG =⇒ D = 4− lnG =

1

G
.

Multiplying both sides of the equation by the integrating factor yields

1

G

(
~ ′ − 1

G
~

)
=

1

G

(
G2

)
=⇒

(
1

G
~

) ′
= G .

Integrating both sides with respect to G then yields the general solution

1

G
~ =

G2

2

+ 2 .

Example 10. Solve the following di�erential equation:

G~ ′ −~ = −G~2.

Solution. Observe that the di�erential equation is Bernoulli, since it can

be written in the form

~ ′ − 1

G
~ = −~2.

Dividing throughout by ~2, we have

~−2~ ′ − 1

G
~−2 = −1.

Thus, we let E = ~−1, and E ′ = −~−2 ~ ′. Hence,

−E ′ − 1

G
E = −1 or E ′ + 1

G
E = 1.

This is a linear equation with integrating factor 4
∫
1/G 3G = G . Hence,

3E

3G
G + E = G =⇒ (GE) ′ = G =⇒ GE =

1

2

G2 + 2 .

Substituting the original value of E back, we end up with

G

~
=
1

2

G2 + 2 .
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Example 11. An object of mass<, initially at rest is dropped from a

certain height. As it falls towards the earth, it experiences a downward

gravitational force, as well as an upward drag force. It is known that this

force due to air resistance is directly proportional to the object’s speed.

Use Newton’s Second Law to set up a di�erential equation modeling this

system. Hence, or otherwise, determine the downward displacement G

travelled by the object as a function of time C .

Solution. By Newton’s Second Law, the sum of forces acting on an object

is equal to the product of the object’s mass and acceleration, � = <0,

where 0 (C) denotes the object’s acceleration at time C . In this case, we

have two forces acting on the object: we have

I a force due to gravity, �gravity = <6, where 6 ≈ 9.81…m s
−2

is the

constant acceleration due to gravity, and

I a drag force in the opposite direction: �drag = −:E , where E (C) denotes

the velocity of the object at time C , and : is some constant.

Since acceleration is the �rst time derivative of velocity, we thus have the

di�erential equation

<E ′ =<6 − :E .

This is a linear di�erential equation: writing it in standard form, we have

E ′ + :
<
E = 6.

We have the integrating factor 4
∫
:/<3C = 4:C/< . Multiplying this to both

sides of the equation yields

4:C/<
(
E ′ + :

<
E

)
= 4:C/<6 =⇒

(
4:C/<E

) ′
= 4:C/<6.

Integrating both sides of the equation with respect to C yields

4:C/<E =
<6

:
4:C/< + 2 .

Since the object starts at rest, we know that E (0) = 0. Thus, 2 = −<6/: , ad

we have the solution to the di�erential equation

E (C) = <6

:
− <6
:
4−:C/< =

<6

:

(
1 − 4−:C/<

)
.

To determine the distance G (C) travelled by the object, we can simply

integrate our expression for the velocity:

G (C) =
∫

<6

:

(
1 − 4−:C/<

)
3C =

<6

:

(
C + <

:
4−:C/<

)
+ 2 .

Setting the starting point as the origin, we have G (0) = 0, and so 2 =

−<26/: , and the displacement of the object is given by

G (C) = <6

:

(
C + <

:

(
4−:C/< − 1

))
.

Remark. Note that the di�erential equation can also be solved by a sepa-

ration of variables—try it out!



16 ma1512 – differential eqations for engineering

2.2 Higher-Order Linear Di�erential Equations

I A linear di�erential equation with constant coe�cients is an

equation of the form

0=~
(=) + 0=−1~ (=−1) + · · · + 01~ ′ + 00~ = 5 (G) , where 08 ∈ R.

When 5 (G) = 0, the equation is said to be homogeneous; otherwise,

the di�erential equation is non-homogeneous.

I Consider the homogeneous linear di�erential equation

0=~
(=) + 0=−1~ (=−1) + · · · + 01~ ′ + 00~ = 0.

To determine solutions to this di�erential equation, we make a guess:

we try ~ (G) = 4_G . Plugging this into the di�erential equation yields its

characteristic equation:

0=_
= + 0=−1_=−1 + · · · + 01_ + 00 = 0.

– If _ ∈ R is a real, distinct root, then a solution is given by

4_G .

– If _ ∈ R is a repeated root with multiplicity A , then solutions are ob-

tained by modifying our trial solution by a factor of G :

4_G , G4_G , G24_G , . . . , GA−14_G .

– If _, _̄ ∈ C are conjugate roots U ± 8V , then Euler’s formula yields

4 (U±8V)G = 4UG cos VG ± 84UG sin VG .

Extracting the real and imaginary parts yields the solutions

4UG cos VG , 4UG sin VG .

If _, _̄ ∈ C are repeated roots, then we can extend the result on real

repeated roots by modifying our solutions with a factor of G :

4UG cos VG , G4UG cos VG , G24UG cos VG , . . . ,

4UG sin VG , G4UG sin VG , G24UG sin VG , . . . .

Theorem 12 (Superposition Principle). Let ~1 (G) and ~2 (G) be solutions
to a homogeneous linear di�erential equation

0=~
(=) + 0=−1~ (=−1) + · · · + 01~ ′ + 00~ = 0

Then, a solution to the di�erential equation is also given by

~ (G) = 21~1 (G) + 22~2 (G) , for all 21, 22 ∈ R.
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Example 13. Find the general solution to

4~ ′′ + 12~ ′ + 9~ = 0.

Solution. The characteristic equation is

4_2 + 12_ + 9 = (2_ + 3)2 = 0,

with a repeated root _ = −3/2. Thus, solutions are given by 4−
3

2
G

and

G4−
3

2
G
, and the general solution is given by

~ = 214
− 3

2
G + 22G4−

3

2
G
.

Example 14. Find the general solution to

~ ′′ − 6~ ′ + 13~ = 0.

Solution. The characteristic equation is

_2 − 6_ + 13 = 0.

By the quadratic formula, we �nd complex conjugate roots:

_ =
6 ±
√
36 − 52
2

= 3 ± 28 .

Thus, solutions are given by 43G cos 2G and 43G sin 2G , and we may form

the general solution

~ = 214
3G
cos 2G + 2243G sin 2G .

Example 15. Find the particular solution to the following di�erential

equation:

~ ′′ −~ = 0, ~ (0) = 5, ~ ′ (0) = 3.

Solution. The characteristic equation is

_2 − 1 = 0,

which has distinct roots _ = −1, 1. We thus have the general solution

~ (G) = 214−G + 224G .

To determine the values of 21 and 22, we plug in the initial conditions.

Note that

~ ′ (G) = −214−G + 224G .

Thus, when G = 0,

~ (0) = 21 + 22 = 5, ~ ′ (0) = −21 + 22 = 3.

We can now solve for the values of 21and 22:{
21 + 22 = 5

−21 + 22 = 3

=⇒
{
21 + 22 = 5

222 = 8

.

Hence, 22 = 4 and 21 = 1, and the particular solution is thus

~ (G) = 4−G + 44G .
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Example 16. Determine the general solution of the following fourth-

order di�erential equation

~ (4) − 5~ ′′ − 36~ = 0.

Solution. The characteristic equation is

_4 − 5_2 − 36 =
(
_2 − 9

) (
_2 + 4

)
= 0.

It has four roots:

I two real roots _ = −3, 3, from which we have solutions 4−3G and 43G ;

I complex conjugate roots _ = ±28 , yielding cos 2G and sin 2G .

We can thus construct the general solution:

~ = 214
−3G + 2243G + 23 cos 2G + 24 sin 2G .



3
The Harmonic Oscillator

3.1 Non-Homogeneous Linear Di�erential Equations

I Consider the non-homogeneous second-order linear equation

~ ′′ + ?~ ′ + @~ = 5 (G) , where 5 (G) ≠ 0.

The general solution to this di�erential equation is given by

~ (G) = ~ℎ (G) +~? (G) ,

where ~ℎ (G) is the general solution to the complementary homogeneous
equation ~ ′′ + ?~ ′ + @~ = 0, and ~? (G) is any particular solution.

I When 5 (G) involves simple functions, we can attempt to ‘guess’ ~? (G)
by the method of undetermined coe�cients. For example,

– if 5 (G) is a polynomial of degree =, we let ~? be an arbitrary =th

degree polynomial with undetermined coe�cients;

– if 5 (G) contains an exponential 4:G , then we try ~? = �4:G , where

� ∈ R is an undetermined coe�cient;

– if 5 (G) contains either cos:G = ℜe(48:G ) or sin:G = ℑm(48:G ), we

can instead solve for the real or imaginary solutions, respectively,

of the complex equation ~ ′′ +<~ ′ + =~ = 48:G by trying ~? = �48:G ,

where � ∈ C is an undetermined coe�cient.

Modi�cation: If any term of the trial solution is already a solution of

the complementary equation, multiply your trial solution by G .

I Given a solution ~ℎ (G) to the complementary equation, we can per-

form a variation of parameters to obtain a particular solution:

~ℎ (G) = 21~1 (G) + 22~2 (G)  ~? (G) = D (G) ~1 (G) + E (G) ~2 (G) ,

where the functions D (G) and E (G) are given by

D (G) = −
∫

~2 5

~1~
′
2
−~ ′

1
~2
3G , E (G) =

∫
~1 5

~1~
′
2
−~ ′

1
~2
3G .
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Example 17. Find the general solution to

~ ′′ + 4~ = 242G .

Solution. The characteristic equation of the complementary equation is

_2 + 4 = 0, with complex roots _ = ±28 , and so

~ℎ = 21 cos 2G + 22 sin 2G .

We now �nd a particular solution: since 5 (G) = 42G , we might guess

~? = �42G .

Then, ~ ′? = 2�42G and ~ ′′? = 4�42G , and substituting these into the

equation,

4�42G + 4
(
�42G

)
= 242G =⇒ 8� = 2

so � = 1/4. Hence, we have the particular solution ~? = 42G/4, and we

obtainthe general solution is

~ = 21 cos 2G + 22 sin 2G +
42G

4

.

Example 18. Find the general solution to

~ ′′ +~ ′ − 2~ = 4G2.

Solution. We begin by solving complementary equation ~ ′′ +~ ′ − 2~ = 0.

The characteristic equation is

_2 + _ − 2_ = (_ − 1) (_ + 2) = 0 =⇒ _ = 1,−2.

Hence, we have the solution of the complementary equation

~ℎ = 214
G + 224−2G .

We now �nd a particular solution: observe that 5 (G) = G2 is a polynomial

of degree 2, so, we might guess a particular solution to be a polynomial of

degree 2, as well: such a polynomial would take on the form

~? = �G2 + �G +� .

We now determine the coe�cients �,�, and � . Observe that ~ ′? = 2�G + �,
and ~ ′′? = 2�. Substituting this into the di�erential equation,

2� + 2�G + � − 2
(
�G2 + �G +�

)
= 4G2

−2�G2 + (2� − 2�) G + (2� + � − 2�) = 4G2.

Comparing coe�cients, we �nd that

−2� = 4, 2� − 2� = 0, 2� + � − 2� = 0.

Solving this, we �nd that � = −2, � = −2, and � = −3. So,

~? = −2G2 − 2G − 3,

and hence, the general solution is

~ = ~ℎ +~? = 214
G + 224−2G − 2G2 − 2G − 3.
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Example 19. Solve

~ ′′ +~ ′ − 2~ = sinG .

Solution. From the previous example, we have

~ℎ = 214
G + 224−2G .

We now �nd a particular solution: note that both cosine and sine terms

can be di�erentiated to yield sinG . In order to minimize dealing with sines

and cosines, we recall Euler’s identity:

48G = cosG + 8 sinG .

In particular, sinG = ℑm
(
48G

)
. Hence, we can equivalently solve for the

particular solution of the di�erential equation

~ ′′ +~ ′ − 2~ = 48G ,

noting that we only want the imaginary part of the solution.

Since 5 (G) = 48G , we guess

~? = �48G .

Since 8 is simply a constant, the derivatives are given by

~ ′? = �848G , ~ ′′? = −�48G .

Plugging this into the di�erential equation yields

−�48G︸︷︷︸
~′′

+ �848G︸︷︷︸
~′

− 2�488G︸ ︷︷ ︸
2~

= 48G =⇒ � (−3 + 8) = 1.

Thus, we �nd that

� =
1

−3 + 8 =
1

−3 + 8 ·
−3 − 8
−3 − 8 = −

3

10

− 1

10

8 .

Note that we only require the imaginary part of ~? :

~? =

(
− 3

10

− 1

10

8

)
(cosG + 8 sinG)

= − 3

10

cosG + 1

10

sinG + 8
(
− 1

10

cosG − 3

10

sinG

)
.

Thus, a particular solution is given by

ℑm
(
~?

)
= − 1

10

cosG − 3

10

sinG .

Therefore, our general solution is

~ = 214
G + 224−2G −

1

10

cosG − 3

10

sinG .
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Example 20. Find the general solution to

~ ′′ − 3~ ′ − 4~ = 544G .

Solution. The characteristic equation of the complementary equation is

_2 − 3_ − 4 = (_ − 4) (_ + 1) = 0.

We thus have the general solution ~ℎ = 214
4G + 224−G .

We now �nd a particular solution: since 5 (G) = 44G , we might guess

~? = �44G . Note, however, that such a guess will not work (try plugging

it into the equation!): in particular, if we were to construct the general

solution ~ = ~ℎ + ~? , this term ‘disappears’ into ~ℎ , leaving us with no

particular solution. We thus modify our guess: we instead try

~? = �G44G ,

~ ′? = �44G + 4�G44G = �44G (1 + 4G) ,
~ ′′? = 4�44G (1 + 4G) + 4�44G = 4�44G (2 + 4G) .

Substituting these into the original di�erential equation yields

4�44G (2 + 4G) − 3
(
�44G (1 + 4G)

)
− 4

(
�G44G

)
= 544G

8� + 16�G − 3� − 12�G − 4�G = 5.

We �nd that 5� = 5, and so our ‘new’ guess works with � = 1. We thus

have ~? = G44G , and we have the general solution

~ = 214
4G + 224−G + G44G .

Example 21. Find a particular solution to

~ ′′ + 2~ ′ + 3~ = 344G cos 2G .

Solution. First, we observe that 5 (G) = 344G cos 2G is equal to

ℜe
(
344G482G

)
= ℜe

(
344G (1+28)

)
.

Thus, we can equivalently solve for

~ ′′ + 2~ ′ + 3~ = 344G (1+28) ,

noting that we only want the real part of this solution. We try

~? = �4G (1+28) ,

~ ′? = � (1 + 28) 4G (1+28) ,
~ ′′? = � (1 + 28)2 4G (1+28) = � (−3 + 48) 4G (1+28) .

Substituting this into the equation, we have

� (−3 + 48) 4G (1+28) + 2� (1 + 28) 4G (1+28) + 3�4G (1+28) = 344G (1+28) ,

and � (2 + 88) = 34. Simplifying this, we �nd

� =
34

2 + 88 =
17

1 + 48 ·
1 − 48
1 − 48 =

17 − 688
17

= 1 − 48 .

So,

~? = (1 − 48) 4G (1+28) = 4G (1 − 48) (cos 2G + 8 sin 2G)
= 4G (cos 2G + 4 sin 2G + 8 (−4 cos 2G + sin 2G)) .

Thus, a particular solution is given by

ℜe
(
~?

)
= 4G (cos 2G + 4 sin 2G) .
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Example 22. Find the general solution to

~ ′′ +~ = tanG .

Solution. The characteristic equation of the complementary equation is

_2 + 1 = 0, with complex roots _ = ±8 . Thus, we have

~ℎ = 21 cosG + 22 sinG .

We can produce a particular solution by varying the parameters: letting

5 (G) = tanG , ~1 (G) = cosG and ~2 (G) = sinG , we have

~? = D (G) cosG + E (G) sinG ,

with

D (G) = −
∫

~2 5

~1~
′
2
−~ ′

1
~2
3G , E (G) =

∫
~1 5

~1~
′
2
−~ ′

1
~2
3G .

Since ~ ′
1
= − sinG and ~ ′

2
= cosG , we have

~1~
′
2
−~ ′

1
~2 = cos

2 G −
(
− sin2 G

)
= 1.

Thus, we �nd that

D (G) = −
∫

sinG tanG 3G = −
∫

sin
2 G

cosG
3G

= −
∫

1 − cos2 G
cosG

3G =

∫
cosG − secG 3G

= sinG − ln |secG + tanG | ,

E (G) =
∫

cosG tanG 3G =

∫
sinG 3G = − cosG .

Hence, a particular solution is given by

~? = [sinG − ln |secG + tanG |] cosG − cosG sinG
= − ln |secG + tanG | cosG .

We thus have the general solution

~ = 21 cosG + 22 sinG − ln |secG + tanG | cosG .
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3.2 Simple Harmonic Motion

I A particle is said to be in simple harmonic motion if its acceleration

is directly proportional to its displacement:

¥G = −l2G ≡ ¥G +lG = 0.

The constant l denotes the angular frequency of the oscillation.

I Consider a damped oscillator, in which a resisting force proportional

to velocity acts against an oscillating object:

¥G = −l2G − 2W ¤G ≡ ¥G + 2W ¤G +l2G = 0.

The characteristic equation is given by _2 + 2W_ +l2 = 0, with solutions

_ =
−2W ±

√
4W2 − 4l2

2

= −W ±
√
W2 −l2

.

The nature of the object’s motion now depends on the value of the

discriminant Δ = W2 −l2
:

– if l2 < W2, we have real roots _1, _2 ∈ R and

G (C) = 214_1C + 224_2C ,

which describes the motion of an overdamped oscillator,

– if l2 = W2, we have a repeated real root _ ∈ R :

G (C) = 214_C + 22C4_C ,

and we have a critically damped oscillator,

– if l2 > W2, we have complex conjugate roots _ = U + 8V ∈ C, and

G (C) = 214UC cos VC + 224UC sin VC ,

describing the motion of an underdamped oscillator.

C

G
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Example 23. Find the general solution to the equation of motion of a

simple harmonic oscillator:

¥G = −l2G .

Solution. We have a second-order homogeneous linear di�erential

equation, whose characteristic equation is given by

_2 +l2 = 0 =⇒ _ = ±8l .

A general solution is thus given by

G (C) = � coslC + � sinlC , �,� ∈ R.

Equivalently, we may write

G (C) = ' cos (lC −i) , where ' =
√
�2 + �2.

To see this, observe that �,�, and ' =
√
�2 + �2 form the sides of a right

triangle, as illustrated below. Let i be the angle between the side of length

� and the hypotenuse.

�

�
'

i

Then, cosi = �/' and sini = �/', and we may rewrite our solution as:

G (C) = � coslC + � sinlC

= '

(
�

'
coslC + �

'
sinlC

)
= ' (cosi coslC + sini sinlC)
= ' cos (lC −i) .

Example 24. Consider an undamped harmonic oscillator equipped with

an external sinusoidal driving force, such as one supplied by a motor

attached to the oscillator. The equation of motion is given by

¥G = −l2G + � coskC .

The phenomena of resonance occurs when the angular frequency of the

driving force is equal to that of the oscillator: that is,k = l . Determine

the function G (C) that describes the oscillator’s motion under resonance.

Solution. We wish to solve the non-homogeneous di�erential equation

¥G +l2G = � coslC .

We can do this using the method of undetermined coe�cients. To begin,

we already have the solution to the complementary equation

Gℎ = � coslC + � sinlC = ' cos (lC −i) .

To �nd G? , we consider the non-homogeneous part � coslC = ℜe
{
�48lC

}
.

We can thus consider the complex di�erential equation

¥G +l2G = �48lC ,

noting that we only require the real part of this solution.
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We can �rst try

G? = �48lC .

Note, however, that ℜe
{
�48lC

}
= � coslC appears in Gℎ ; we thus need to

modify our guess. Let

G? = �C48lC .

Then,

¤G? = �48lC +�8lC48lC = �48lC (1 + 8lC) ,
¥G? = �8l48lC (1 + 8lC) +�8l48lC = �8l48lC (2 + 8lC) .

Plugging these into the di�erential equation yields:

�8l48lC (2 + 8lC) +l2
(
�C48lC

)
= �48lC

�8l (2 + 8lC) +�Cl2 = � .

We thus �nd that 2�8l = � , or

� =
�

28l
· 8
8
= −8 �

2l
.

Our particular solution is thus

G? =

(
−8 �

2l

)
C48lC = −8 �

2l
C (coslC + 8 sinlC) .

We only require the real part of this solution:

ℜe
{
G?

}
=

�

2l
C sinlC .

Thus, the motion of an oscillator under resonance is given by

G (C) = ' cos (lC −i) + �

2l
C sinlC .

Observe that as C goes on, G (C) continuously increases, and the amplitude

of the oscillation grows until it goes out of control.

C

G



4
The Laplace Transform

4.1 Basic Properties

I The Laplace transform of f (t) is de�ned by

L [5 (C)] = � (B) = lim

ℎ→∞

∫ ℎ

0

5 (C) · 4−BC 3C ,

and 5 (C) is the inverse Laplace transform of � (B): 5 (C) = L−1 [� (B)].

Theorem 25 (Linearity). Given functions 5 (C) and 6 (C) ,

L [05 (C) +16 (C)] = 0L [5 (C)] +1L [6 (C)] , for all 0,1 ∈ R.

Theorem 26 (The First Shifting Theorem). Let � (B) = L [5 (C)]. Then,

L
[
40C 5 (C)

]
= � (B − 0) .

Theorem 27 (Derivatives). Given a function 5 (C),

L
[
5 (=) (C)

]
= B=L [5 (C)] − B=−1 5 (0) − · · · − B 5 (=−2) (0) − 5 (=−1) (0) .

Theorem 28 (Di�erentiation Property). Let � (B) = L [5 (C)] . Then,

L [C= 5 (C)] = (−1)= � (=) (B) .

Example 29. Use the de�nition of the Laplace transform to compute

L [5 (C)] for the function 5 (C) = C , C ≥ 0.

Solution. We directly apply the de�nition of the Laplace transform:

L [C] = lim

ℎ→∞

∫ ℎ

0

C · 4−BC 3C

= lim

ℎ→∞

[
4−BC

(
− C
B
− 1

B2

)] ����ℎ
0

= lim

ℎ→∞

(
−ℎ4

−Bℎ

B
− 4
−Bℎ

B2
+ 1

B2

)
.

This limit exists when B > 0:

L [C] = 1

B2
, B > 0.



28 ma1512 – differential eqations for engineering

Example 30. Find the inverse Laplace transform of � (B) = 1

B2 + 2B − 3 .

Solution. We perform a partial fraction decomposition of � (B):

� (B) = 1

B2 + 2B − 3 = −1
4

· 1

B + 3 +
1

4

· 1

B − 1 .

We take the inverse transform of � (B) term by term, with reference to the

table of Laplace transforms:

L−1 [� (B)] = −1
4

· L−1
[

1

B + 3

]
+ 1
4

· L−1
[

1

B − 1

]
= −1

4

4−3C + 1
4

4C .

Example 31. Evaluate L
[
40C coslC

]
.

Solution. Let � (B) be the Laplace transform of coslC . By the First Shift-

ing Theorem, we simply replace every instance of B in � (B) with B − 0:

L
[
40C coslC

]
= � (B − 0) = B − 0

(B − 0)2 +l2

.

Example 32. Find the inverse Laplace transform of

� (B) = 1 − 3B
B2 + 8B + 32 .

Solution. Observe that the denominator cannot be factored; thus, we try

a di�erent way of manipulating this expression. Completing the square,

B2 + 8B + 32 =
(
B2 + 8B + 42

)
+ 32 − 42 = (B + 4)2 + 16.

We may thus apply the First Shifting Theorem, but in order to do so, we

need to rewrite the numerator.

� (B) = 1 − 3 (B + 4 − 4)
(B + 4)2 + 16

=
−3 (B + 4) + 13
(B + 4)2 + 16

= − 3 (B + 4)
(B + 4)2 + 42

+ 13

(B + 4)2 + 42
.

We now take the inverse Laplace transform of � (B):

L−1 [� (B)] = −3L−1
[

B + 4
(B + 4)2 + 42

]
+ 13

4

L−1
[

4

(B + 4)2 + 42

]
= −34−4C cos 4C + 13

4

4−4C sin 4C .

Example 33. Use the de�nition of the Laplace transform to compute the

Laplace transform of a given function’s derivative, 5 ′ (C) .

Solution. We directly apply the de�nition of the Laplace transform:

L [5 ′ (C)] = lim

ℎ→∞

∫ ℎ

0

4−BC 5 ′ (C) 3C .

Integrating by parts, let D = 4−BC and 3E = 5 ′ (C) 3C . Then, 3D = −B4−BC3C ,
E = 5 (C) , and

L [5 ′ (C)] = lim

ℎ→∞
4−BC 5 (C)

��ℎ
0
−

∫ ℎ

0

(
−B4−BC

)
5 (C) 3C

= −5 (0) + B lim

ℎ→∞

∫ ℎ

0

4−BC 5 (C)

= −5 (0) + BL [5 (C)] .
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Example 34. Use the de�nition of the Laplace transform to show that,

given a function 5 (C) ,

L [C 5 (C)] = −� ′ (B) .

Solution. Let � (B) = L [5 (C)] . Di�erentiating this expression with

respect to B , we have

� ′ (B) = 3

3B
lim

ℎ→∞

∫ ℎ

0

4−BC 5 (C) 3C

= lim

ℎ→∞

∫ ℎ

0

(−C) 4−BC 5 (C) 3C

= − lim

ℎ→∞

∫ ℎ

0

4−BC [C 5 (C)] 3C

= −L [C 5 (C)] .

Example 35. Solve the initial value problem

~ ′ + 2~ = 0, ~ (0) = 2.

Solution. Taking the Laplace transform of both sides of the di�erential

equation, we have

L [~ ′ + 2~] = L [0] .

Evaluating the left-hand side, observe that

L [~ ′ + 2~] = (BL [~] −~ (0)) + 2L [~]
= (BL [~] − 2) + 2L [~]
= (B + 2) L [~] − 2.

The right-hand side is simply L [0] = 0. Thus, we have

(B + 2) L [~] − 2 = 0 =⇒ L [~] = 2

B + 2 .

Therefore, taking the inverse Laplace transform of both sides, we arrive at

the particular solution to the di�erential equation

~ = 2 · L−1
[

1

B + 2

]
= 24−2C .

This is indeed correct—notice that the di�erential equation is separable,

and we arrive at the same answer! Observe that

3~

3C
+ 2~ = 0 =⇒

∫
1

~
3~ =

∫
−23C =⇒ ln |~ | = −2C + 2 .

Exponentiating both sides yields

~ = 4−2G+2 = �4−2C ,

and since ~ (0) = 2, we have � = 2, yielding the same particular solution

~ = 24−2C .
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Example 36. Solve the initial value problem

~ ′′ −~ ′ − 2~ = 0, ~ (0) = 1, ~ ′ (0) = 0.

Solution. We take the Laplace transform of both sides of the equation:

L [~ ′′ −~ ′ − 2~] = L [0] .

We expand the left-hand side of the equation:

L [~ ′′ −~ ′ − 2~] = L [~ ′′] − L [~ ′] − 2L [~]
=

(
B2L [~] − B~ (0) −~ ′ (0)

)
− (BL [~] −~ (0)) − 2L [~]

=
(
B2L (~) − 1

)
− (BL [~] − 1) − 2L [~]

=
(
B2 − B − 2

)
L [~] − B + 1.

Since L [0] = 0, we have(
B2 − B − 2

)
L [~] − B + 1 = 0 =⇒ L [~] = B − 1

B2 − B − 2 =
B − 1

(B − 2) (B + 1) .

To compute the inverse Laplace transform of L [~] , we take its partial

fraction decomposition:

B − 1
(B − 2) (B + 1) =

�

B − 2 +
�

B + 1 =
(� + �) B +� − 2�

B2 − B − 2 .

Thus, � + � = 1 and � − 2� = −1. Hence, � = 2/3 and � = 1/3, and

L [~] = B − 1
(B − 2) (B + 1) =

1

3

· 1

B − 2 +
2

3

· 1

B + 1 .

Taking the inverse Laplace transform of both sides, we �nd that

~ = L−1
[
1

3

· 1

B − 2 +
2

3

· 1

B + 1

]
=
1

3

42C + 2
3

4−C .

Verify that you obtain the same result by solving the equation as a homo-

geneous linear equation!
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4.2 Step Functions and the Unit Impulse

I The unit step function, denoted by D (C − 2) , is de�ned by

D (C − 2) =
0, C < 2 ,

1, C > 2 .

C

~ D (C − 2)

The Laplace transform of the unit step is given by

L [D (C − 2)] = 4−2C

B
.

I Consider the function

5 (C) =
1/Y, 0 < C < Y,

0, C > Y.

The Dirac delta function (or the unit impulse function) is de�ned

by taking the limit of 5 (C) as Y → 0:

X (C) = lim

Y→0

5 (C) .

C

~

Y = 2

Y = 1

Y = 0.5

Y = 0.25

as Y→0−−−−−→

C

~

X (C)

Its Laplace transform is given by

L [X (C − 2)] = 4−2B .

Theorem 37 (The Second Shifting Theorem). Let � (B) = L [5 (C)] . Then,

L [5 (C − 2) D (C − 2)] = 4−B2� (B) .

Equivalently, we may write

L [5 (C) D (C − 2)] = 4−B2L [5 (C + 2)] .
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Example 38. Describe the graph of

~ (C) = D (C − 0) −D (C −1) , where 0 ≤ 0 < 1.

Hence, describe the graph of

I (C) = 5 (C) [D (C − 0) −D (C −1)] , where 0 ≤ 0 < 1.

Solution. By the de�nition of the unit step function,

~ (C) =


0 − 0 = 0, C < 0,

1 − 0 = 1, 0 < C < 1,

1 − 1 = 0, C > 1.

This is simply a function that has value 1 over the interval (0,1) and is

zero elsewhere. Thus, the function I (C) takes on the graph of 5 (C) over

the interval (0,1) and zero elsewhere:

~ (C) =


0, C < 0,

5 (C) , 0 < C < 1,

0, C > 1.

Example 39. Consider the piecewise function given by

5 (C) =


2, 0 < C < 1,

C2/2, 1 < C < c/2,
cos C , C > c/2.

Write 5 (C) in terms of the unit step function, and hence �nd the Laplace

transform of 5 (C) .

C

~ Figure 1: Graph of the function 5 (C ) .

Solution. We can rewrite 5 (C) by taking the products of the function’s

values with the corresponding di�erence of unit step functions:

5 (C) = 2 (1 −D (C − 1)) + C
2

2

[
D (C − 1) −D

(
C − c

2

)]
+ cos C ·D

(
C − c

2

)
= 2 (1 −D (C − 1)) + C

2

2

·D (C − 1) − C
2

2

·D
(
C − c

2

)
+ cos C ·D

(
C − c

2

)
.

We now take the Laplace transforms of each term. The �rst term is fairly

straightforward:

L [2 (1 −D (C − 1))] = 2

(
1

B
− 4
−B

B

)
.
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For the second term, we apply the Second Shifting Theorem,

L
[
C2

2

·D (C − 1)
]
=
1

2

4−BL
[
(C + 1)2

]
=
4−B

2

L
[
C2 + 2C + 1

]
=
4−B

2

(
2!
B3
+ 2

B2
+ 1
B

)
.

Similarly for the third term,

L
[
C2

2

·D
(
C − c

2

)]
=
1

2

4−Bc/2L
[(
C + c

2

)
2

]
=
1

2

4−Bc/2L
[
C2 + cC + c

2

4

]
=
1

2

4−Bc/2
(
2!
B3
+ c
B2
+ c

2

4B

)
.

Finally, we have

L
[
cos C ·D

(
C − c

2

)]
= 4−Bc/2L

[
cos

(
C + c

2

)]
= 4−Bc/2L [− sin C]

= −4
−Bc/2

B2 + 1 .

We can now combine all our results to form � (B) = L [5 (C)]:

� (B) = 2

(
1 − 4−B
B

)
+ 4−B

(
1

B3
+ 1

B2
+ 1

2B

)
+ 4−Bc/2

(
1

B3
+ c

2B2
+ c

2

8B
− 1

B2 + 1

)
.

Example 40. Find the inverse Laplace transform of

� (B) = 1 + 4−cB
B2 + 1 .

Solution. The exponential term suggests that 5 (C) = L−1 [� (B)] is a

piecewise function. Applying the Second Shifting Theorem,

L−1
[
1 + 4−cB
B2 + 1

]
= L−1

[
1

B2 + 1

]
+ L−1

[
4−cB

B2 + 1

]
= sin C +D (C − c) sin (C − c) .

Note that since sin (C − c) = − sin C , we have

5 (C) = sin C (1 −D (C − c)) =
sin C , 0 < C < c ,

0, C > c .
.

C

~ Figure 2: Graph of the function 5 (C ) .
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Example 41. Consider a damped oscillator which is struck by a hammer

at time C = 1. The equation of motion is given by the di�erential equation

¥~ + 3 ¤~ + 2~ = X (C − 1) , ~ (0) = ¤~ (0) = 0.

Determine the function ~ (C) that describes the motion of the oscillator.

Solution. Take the Laplace transform of both sides, we have

B2L [~] + 3BL [~] + 2L [~] = 4−B =⇒ L [~] = 4−B

B2 + 3B + 2 .

Observe that we may rewrite the above expression—taking a partial frac-

tion decomposition

4−B

B2 + 3B + 2 =
4−B

(B + 1) (B + 2) =
(

1

B + 1 −
1

B + 2

)
4−B .

Taking the inverse of the above function,

L−1
[(

1

B + 1 −
1

B + 2

)
4−B

]
= D (C − 1)

(
4−(C−1) − 4−2(C−1)

)
.

Thus, the solution to the initial value problem is given by

~ (C) =
0, 0 < C < 1,

4−(C−1) − 4−2(C−1) , C > 1.



5
Partial Di�erential Equations

5.1 An Introduction

I A partial di�erential equation is an equation involving one or more

partial derivatives of a function that depends on two or more variables.

I The order of a partial di�erential equation is the order of the highest

derivative in the equation.

I A solution of a partial di�erential equation is a function that satis�es

the equation. In general, there are many solutions to a single PDE,

and unlike ordinary di�erential equations, these solutions may all be

entirely di�erent from each other

I A partial di�erential equation is linear if it is of the �rst degree in the

unknown function and its derivatives.

I If each of the terms in the linear equation contains either or one of its

partial derivatives, then the equation is homogeneous; otherwise, it is

nonhomogeneous.

I In some cases, we can ‘construct’ a solution to a partial di�erential

equation by the method of separation of variables:

1. Suppose that a solution exists of the form D (G ,~) = - (G) . (~) .

2. Replace all expressions of D (e.g., D,DG ,D~ , . . . ) in the di�erential

equation with their corresponding expression in terms of - and .

(e.g., D = -. , DG = - ′. , D~ = -. ′,DG~ = - ′. ′, . . . ).

3. Separate all the terms involving G and the terms involving ~, and

equate both sides to a separation constant : .

4. Solve the ordinary di�erential equations in G and ~ to obtain

D (G ,~) = - (G) . (~) .

Theorem 42 (Superposition Principle). Let D1 (G ,~) and D2 (G ,~) be solu-
tions of a homogeneous linear partial di�erential equation. Then, a solution
is also given by

D (G ,~) = 21D1 (G ,~) + 22D2 (G ,~) , for any 21, 22 ∈ R.
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Example 43. The two-dimensional Laplace equation is given by

DGG +D~~ = 0.

Show that the functions D (G ,~) = G2 −~2 and D (G ,~) = 4G cos~ are both

solutions to the Laplace equation. Hence, conclude that a solution to the

Laplace equation is also given by

D (G ,~) = 5G2 − 5
(
4G cos~ +~2

)
.

Solution. We compute the partial derivatives of D (G ,~) = G2 −~2:

DGG = (2G)G = 2, D~~ = (−2~)~ = −2.

Plugging this into the Laplace equation, we �nd that D (G ,~) is indeed a

solution:

DGG +D~~ = 2 − 2 = 0.

Similarly, we compute the partial derivatives of D (G ,~) = 4G cos~:

DGG = (4G cos~)G = 4G cos~, D~~ = (−4G sin~)~ = −4G cos~,

and we verify that D (G ,~) satis�es the di�erential equation:

DGG +D~~ = 4G cos~ − 4G cos~ = 0.

The Laplace equation is homogeneous and linear: by the Superposition

Principle, we �nd that

D (G ,~) = 5G2 − 5
(
4G cos~ +~2

)
= 5

(
G2 −~2

)
− 54G cos~

must also be a solution to the partial di�erential equation.

Example 44. Use the method of separation of variables to �nd a solution

to

DG + GD~ = 0.

Solution. Suppose that a solution of the form D (G ,~) = - (G) . (~)
exists. Then,

DG (G ,~) = - ′ (G) . (~) , D~ (G ,~) = - (G) . ′ (~) .

Plugging this into the di�erential equation, we �nd that

- ′. + G-. ′ = 0.

We now perform a separation of variables, noting that the functions -

and - ′ only involve the variable G , and . ,. ′only involve the variable ~:

- ′. = −G-. ′ =⇒ 1

G-
· 3-
3G

= − 1
.
· 3.
3~

.

Observe that equality holds for all values of G and ~—this is only possible

if both expressions were constant. Thus, we may set

1

G-
· 3-
3G

= − 1
.
· 3.
3~

= : for some : ∈ R.
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This gives rise to two ordinary di�erential equations, one in G , and an-

other in ~. We solve these equations in turn.

1

G-
· 3-
3G

= : =⇒
∫

1

-
3- =

∫
:G 3G =⇒ ln |- | = : G

2

2

+ 2 ,

− 1
.
· 3.
3~

= : =⇒
∫

1

.
3. =

∫
−: 3~ =⇒ ln |. | = −:~ +3 .

Exponentiating both expressions, we have

- (G) = 4:G2/2+2 = �4:G2/2, . (~) = 4−:~+3 = �4−:~ .

By our initial assumption, the product of - (G) and . (~) forms the solu-

tion to the original di�erential equation:

D (G ,~) = - (G) . (~) =
(
�4:G

2/2�4−:~
)
= �4: (G2/2−~) .

Example 45. Use the method of separation of variables to �nd the solu-

tion to the partial di�erential equation

GDG = D +~D~

that satis�es the conditions D (1, 1) = 2 and D (1, 2) = 8.

Solution. Let D = - (G) . (~) . Then, DG = - ′. and D~ = -. ′, and the

di�erential equation becomes

G- ′. = -. +~-. ′ =⇒ G

-
- ′ − 1 = ~

.
. ′.

Setting both sides equal to : , we arrive at two ordinary di�erential equa-

tions which we can solve:

G

-
- ′−1 = : =⇒

∫
1

-
3- =

∫
(: + 1) 1

G
3G =⇒ ln |- | = (: + 1) ln |G | +2 ,

~

.
. ′ = : =⇒

∫
1

.
3. =

∫
:
1

~
3~ =⇒ ln |. | = : ln |~ | +3 .

Exponentiating both sides, we thus �nd that

- (G) = �G:+1, . (~) = �~: .

So, a solution to the partial di�erential equation is given by

D (G ,~) = - (G) . (~) = �G:+1~: , where � ∈ R.

To �nd a particular solution, we use the given conditions.

D (1, 1) = � · 1 · 1 = 2 =⇒ � = 2,

D (1, 2) = 2 · 1 · 2: = 8 =⇒ : = 2.

Thus, the particular solution is given by

D (G ,~) = 2G3~2.
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5.2 The Heat Equation

I The dispersion of heat on a metal rod of length ℓ is described by the

heat equation

DC = 2
2DGG , 0 < G < ℓ , C > 0.

The constant 22 is known as the thermal di�usivity of the metal, and

the solution D (G , C) describes the temperature of the rod at a given

point G and time C . Assuming that the rod is insulated at its ends G = 0

and G = ℓ , we have the boundary conditions

D (0, C) = 0, D (ℓ , C) = 0.

If the initial distribution of heat is given by the function 5 (G) , then we

have the initial condition

D (G , 0) = 5 (G) .

G = 0 G = ℓ

Example 46. Use the method of separation of variables to �nd a solution

to the heat equation given the initial and boundary conditions

DC = 2
2DGG , D (0, C) = D (ℓ , C) = 0, D (G , 0) = 5 (G) .

Solution. Let D (G , C) = - (G)) (C) . Then, DC = -) ′, DGG = - ′′) :
plugging this into the heat equation,

-) ′ = 22- ′′) =⇒ 1

22
· 1
)

3)

3C
=

1

-

32-

3G2
.

Setting both sides equal to a constant : , we obtain two ordinary di�eren-

tial equations. The �rst-order di�erential equation in C is easy to solve:∫
1

)
3) =

∫
22: 3C =⇒ ln) = 22:C +3 =⇒ ) = �42

2:C
.

Now, consider the second-order di�erential equation in G :

1

-

32-

3G2
= : =⇒ - ′′ − :- = 0.

This is a second-order homogeneous linear di�erential equation: the

characteristic equation is given by

_2 − : = 0 =⇒ _ = ±
√
: .

The nature of the solution - (G) now depends on the value of : , but we

know that it will involve either exponentials or sines and cosines.
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By our initial conditions, D (G , C) must be 0 at both G = 0 and G = ℓ .

This would be impossible of D (G , C) only involved exponential terms;

hence, - (G) must be trigonometric. In particular, we require that : < 0,

which yields the solution

- (G) = 21 cos
(√
−:G

)
+ 22 sin

(√
−:G

)
.

Thus, a general solution to the heat equation is given by

D (G , C) = - (G)) (C) = 422:C
(
U cos

(√
−:G

)
+ V sin

(√
−:G

))
.

We now �nd the values of the constants U , V , and : . Given the boundary

conditions D (0, C) = 0 and D (C , ℓ) = 0,

D (0, C) = 422:C (U cos 0 + V sin 0) = U422:C = 0 =⇒ U = 0,

D (ℓ , C) = 422:C
(
V sin

(
ℓ
√
−:

))
= 0 =⇒ V sin

(
ℓ
√
−:

)
= 0.

Since U and V cannot both be 0, the second equation implies that

sin

(
ℓ
√
−:

)
= 0 =⇒

√
−: =

=c

ℓ
, for = ∈ 0, 1, 2, . . . .

Thus, : = −=2c2/ℓ2. Thus, our solution is now given by

D (G , C) = V=4−2
2=2c2C/ℓ2

sin

(=c
ℓ
G

)
.

In order to deduce V= , we use the initial condition D (0,G) = 5 (G) :

D (G , 0) = V= sin
(=c
ℓ
G

)
= 5 (G) .

Observe that for di�erent functions 5 (G) , the heat equation will have

di�erent coe�cients and, as expected, di�erent particular solutions.

Example 47. Solve the partial di�erential equation

DC = 2DGG , 0 < G < 3, C > 0,

given the boundary conditions D (0, C) = D (3, C) = 0 and the initial

condition D (G , 0) = 5 sin (4cG) .

Solution. This is simply the heat equation with 22 = 2, ℓ = 3, and

5 (G) = 5 sin (4cG) . We have already found its solution:

D (G , C) = V=4−2=
2c2C/9

sin

(=c
3

G

)
,

and it remains to determine the values of = and V= . By the initial condition

D (G , 0) = 5 sin (4cG) , we have at C = 0

V= sin

(=c
3

G

)
= 5 sin (4cG) .

Observe that = must hence be 12, and so V12 = 5. Thus, a solution to the

heat equation under these conditions is given by

D (G , C) = 54−2·144·c
2C/9

sin (4cG) = 54−32c
2C
sin (4cG) .





Table of Laplace Transforms

f (t) = L−1 [L (s)] L (s) = L [f (t)]

1
1

B

40C
1

B − 0

C= , for = ∈ N
=!
B=+1

√
C

√
c

2B3/2

cos0C
B

B2 + 02

sin0C
0

B2 + 02
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